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Figure 1: An example CAD object, 3D scanned from two different viewpoints, and aligned using our method 

 

 
Abstract— In this paper, we introduce a new method for the 

rough alignment of point-clouds. We focus on a special type of 

point-clouds that is composed of simple geometric shapes like 

planes, cylinders, cones, etc. We call them 3D CAD point clouds. 

They are usually used in industrial and mechanical applications. 

The proposed method starts by detecting basic shapes in the point-

clouds. And then using them to find the best transformation 

(rotation and translation) that aligns the point-clouds. Then, we 

run the fine alignment step using the iterative closest point method 

(ICP). We show several real-world examples of point-clouds 

before and after the alignment using this method. The results 

suggest that the proposed method works well in most cases given 

enough overlap between the point-clouds. 

Keywords—3D Coarse Registration; CAD Point Clouds; Shapes 

Detection;  

I.  INTRODUCTION 

3D scanners are used to capture the shape of a real-world 
object to produce a 3D virtual model on the computer. The 
process usually involves capturing 3D data (in the form of a 3D 
point-cloud) of the same physical object from multiple views. 
Each view is selected to cover the object from a certain direction 
to capture the whole object. But, the views are usually not related 
to each other. So, it’s important to align these views to produce 
one merged point cloud that could be then reconstructed into a 
3D surface. 

The alignment step is not a trivial task. And it usually needs 
enough overlap between the two views, such that we could use 
the overlapping parts of the point-clouds to find the best 
alignment. Most often, the alignment step is formulated as an 

optimization problem that depends on the geometry of the point-
clouds. 

If we have some prior knowledge about the geometry of the 
point clouds, can we exploit it to solve the alignment problem? 
In this work, we focus on a certain type of objects coming from 
industrial and mechanical applications. Those objects which are 
designed by CAD systems, and tend to be composed of simple 
geometric shapes like planes, cylinders, cones, etc.  

In this paper, we assume that we have two point-clouds 
representing two different views of a CAD object. We propose 
an algorithm that first detects the basic shapes in the two point-
clouds. Then it searches for the best combination of basic shapes 
that gives the best alignment. Finding the best alignment 
problem is divided into two sub-problems, first, finding the best 
rotation and then, finding the best translation. At last a few 
iterations of the iterative closest point “ICP” algorithm [12] are 
applied to get a fine registration between the two point-clouds, 
see Figure 1 for an example.   

II. PREVIOUS WORK 

   Due to its importance, there’s been a lot of research into the 

problem of 3D registration. Refer to [5] and [6] for a 

comprehensive survey on the topic.  

   In general, registration problems can be divided into rigid and 

non-rigid registration. In this work, we focus on the rigid 

registration problem, where the point-clouds represent different 

views of the same rigid object that has not changed or deformed. 

   Rigid alignment usually involves two stages: coarse 

alignment and fine alignment. 
 



 

Figure 2: Method Steps:  0) 3D scanning the physical object to get two point-clouds representing two views. 1) Detecting basic 

shapes like planes and cylinders in the two point-clouds, each shape points are colored uniquely. 2) Find the best combination of 

the detected shapes. Corresponding shapes are given the same color. 3) Finding the best rotation R and the best translation T (the 

output of the method). 4) Using R, T to align the two point-clouds and then applying ICP algorithm for fine registration. 

 

   The goal of the coarse alignment step (often called global 

registration) is to roughly align the two point-clouds to prepare 

them for the fine registration step. A variant of the iterative 

closest point (ICP) [12-13], is used for the fine alignment, but 

it needs a good initial rough alignment, otherwise, it can get 

stuck in a local minima. 

   Previous methods for rough alignment include PCA [7], 

features-based [8] (like high curvature features or using sharp 

edges), global search algorithms [10], and using planes [11, 14-

16]. 

   PCA is the simplest method for rough alignment. It tries to 

align the principal directions of the two point-clouds, but it fails 

if the dimensions of the point-cloud are close to each other. 

Search algorithms usually take a long time to test different 

possible solutions. In the case of CAD point clouds, edges and 

high curvature points are usually lost and are hard to retrieve, 

so it’s hard to use them for registration. 

   In this work, we believe that the easiest features to extract 

from CAD point clouds are the basic shapes surfaces like planes 

and cylinders because they cover a large surface area. Some 

previous papers used planes especially for camera tracking in 

SLAM applications [10]. The difference is that in SLAM 

applications there are usually plenty of planes detected from the 

walls and floors, but in our case, for CAD point clouds it’s not 

enough to use planes only to align them. Especially with partial 

views, fewer planes are usually detected, and more importantly 

detected planes should be shared between two or more views. 

So, we need also to use other basic shapes like cylinders as they 

restrict the search domain and reduce the transformation 

degrees of freedom more than the planes. In our method, we 

define one simple formulation for the different types of basic 

shapes. 

III. METHOD 

The algorithm takes as an input two partial point clouds 
captured of the same object from two different views, and the 
output is the rigid transformation matrix that aligns one of them 
to the second, See Figure 2. We will first talk about a manual 
approach for the alignment, then we will propose the automated 
approach. 

A. Manual Approach 

Although there are several automated coarse alignment 
algorithms; people more often prefer to do it manually. 
Automated algorithms fail in many cases, or take too long to 
search for the optimal alignment. The conventional manual 
coarse alignment is done by manually selecting a few 
corresponding points between the two point-clouds. Then 
finding the best transformation between those points.  

   In the case of CAD point clouds, there are no clear distinct 
points because the high curvature points are usually lost in the 
point clouds. So, even this manual approach fails in many cases. 
In this work, we present a better manual approach as in the 
following steps: 

1) Step 1: Manually Selecting Basic Shapes:     

We allow the user to manually select a number of 
corresponding basic shapes in the same order in the two point-
clouds. First, the user should specify the shape type (plane, 
cylinder, etc.), then he should click anywhere on the surface of 
that basic shape. Then our software will use a KD-tree to find 
the nearest K neighbors of the clicked point, then find the best 
fitting shape (of the type specified) that fits these points in the 
least squares sense. The fitting is done by minimizing the least 
squares distance from the points to the surface of the specified 
shape according to [1]. 

  



   After the initial fitting of the surface, we run a few 
iterations to refine the fitting. In each iteration, we first find the 
inlier points to that shape of the whole point cloud using a 
specific distance and angle thresholds and remove the outlier 
points, and then we run the least squares fitting again only to the 
inlier points. After a few iterations, the refinement loop stops on 
the best fitting shape at that specific point. 

   The user should repeat this operation a few times, selecting 
shapes by clicking on the two point-cloud in the same order to 
select corresponding shapes. After that, the algorithm will use 
those selected shapes to find the best transformation that aligns 
the two point-clouds. 

2) Step 2: Find Best Rotation:     
The outputs of the previous step are two lists of basic shapes 

(planes, cylinders, etc.), one for each point cloud. We divide the 
problem of finding the best transformation into two sub-
problems: finding the best rotation that aligns the two lists of 
shapes, then finding the best translation (see Figure 3 below).  

   We could use each corresponding pair of shapes to define 
a rotation that aligns the two shapes together, let’s assume that 
we have N pairs of shapes. That means we have N rotations. 
Instead, we want to find one rotation that best aligns all the 
shapes of the first point-cloud to their corresponding shapes of 
the second point-cloud. Where each pair of shapes contributes to 
this rotation.  

   So, in general, each pair of shapes contribute with a pair of 
vectors (𝑣𝑖 , 𝑣𝑖

′) that should be aligned together. For planes we 
want to align the normal of the planes, so the pair of vectors 
could be the pair of planes normals. For cylinders, cones and 
toruses, we want to align their axis of rotation, so the pair of 
vectors to be aligned are the pairs of axis of rotation of the two 
corresponding shapes. Spheres don’t contribute to the problem 
of finding best rotation, but only for finding the best translation. 

We define our objective as to find the rotation matrix R that 
minimizes the squares of distances between N pairs of vectors: 

𝐸 = ∑‖𝑣𝑖
′ − 𝑅𝑣𝑖‖

2

𝑁

𝑖=1

 

 
   Since each vector could be considered as a point in the unit 

sphere, we could use the same formulation that’s used to align 
corresponding points as in ICP algorithm. So, we used the SVD 
approach of [2] to find the best rotation matrix R. 

3) Step 3: Find Best Translation:     
After finding the best Rotation Matrix R, we use it to rotate 

the second point cloud and all its detected shapes to be in the 
same orientation of the first point cloud. All that remains is to 
translate the second point-cloud to match the first point-cloud. 

To find the best translation vector T, we define a separate 
minimization problem, that minimizes the sum of squared 
orthogonal distances between each pair of basic shapes of the 
selected shapes. 

𝐸 =  ∑(𝑇.𝑁𝑖 − 𝐷𝑖)
2

𝑛

𝑖=1

 

Where Ni is the orthogonal direction vector of the two shapes 
(for example in the case of plane we can set it to the average of 
the two corresponding planes normals after rotation). While Di 
is the orthogonal distance between the two shapes. 

To minimize it with respect to T, we set: 

𝑑𝐸

𝑑𝑇
=  ∑𝑁𝑖(𝑇. 𝑁𝑖 − 𝐷𝑖) = 0 

 

This defines the following system of equations: 𝐴𝑇 = 𝑏 

[
 
 
 
 
 ∑𝑁𝑖𝑥

2 ∑ 𝑁𝑖𝑥𝑁𝑖𝑦 ∑𝑁𝑖𝑥𝑁𝑖𝑧

∑ 𝑁𝑖𝑦𝑁𝑖𝑥 ∑𝑁𝑖𝑦
2 ∑𝑁𝑖𝑦𝑁𝑖𝑧

∑ 𝑁𝑖𝑧𝑁𝑖𝑥 ∑ 𝑁𝑖𝑧𝑁𝑖𝑦 ∑𝑁𝑖𝑧
2

]
 
 
 
 
 

[

𝑇𝑥

𝑇𝑦

𝑇𝑧

] =

[
 
 
 
 
 ∑ 𝑁𝑖𝑥𝐷𝑖

∑ 𝑁𝑖𝑦𝐷𝑖

∑ 𝑁𝑖𝑧𝐷𝑖 ]
 
 
 
 
 

 

 
Then we fill those matrices (A, b) by looping through each 

pair of selected shapes. Then we find the best translation as:  

𝑇 =  𝐴−1𝑏 
 

 

Figure 3: Finding the best alignment problem is divided into 

two sub-problems: 1) Find the best rotation 2) find the best 

translation. 

 

4) Step 4: Fine registration using ICP:     
After the coarse registration defined above, we refine the 

alignment using ICP to get a fine registration between the two 
point-clouds. 

B. Automated Approach 

Instead of asking the user to manually select the shapes of 
the two point-clouds, we could automate the operation of 
detecting those shapes as in the following steps: 

1) Step 1: Detect basic shapes using RANSAC:     
   There are several methods to detect basic shapes in point 

clouds, we could simply select random points and apply the 
least squares fitting and refining approach described in step 1 
above. Instead, we used the RANSAC method in [3] to detect 



the basic shape. Their approach works by randomly selecting 
points in the point-cloud and testing whether they form one of 
the basic shapes. Then out of many iterations, they keep the 
detected shapes that has many inlier points. See an example in 
Figure 4 below. 

 

Figure 4: Detected shapes example. Left: inlier points for each 

shape are given different color. Right: some examples of the 

detected shapes. 

 

2) Step 2: Find the correct combination and ordering 

between the detected shapes 
   The shapes are detected in the two point-clouds in arbitrary 

order. We need to get the correct correspondence between the 
detected shapes to run the algorithm successfully. Even though 
we have a few detected shapes, it’s still not a trivial task to find 
the correct correspondence. Because the number of possible 
permutations grows exponentially. It might not be efficient to try 
every possible permutation, so we choose to use RANSAC 
algorithm to do that. 

    In each iteration of the algorithm, we randomly select 
three shapes of each point-cloud in a random order. The shapes 
selected should be of the same type (match planes to planes, 
cylinders to cylinders, etc.). and we test if the selected 
combination gives the best alignment. And after many iterations, 
we select the combination that gives the best alignment. Then 
we run the steps described above to find the best rotation and 
translation.  

     To test the randomly selected combination in each 
iteration we first calculate the best transformation between the 
selected shapes (as described above) and using this 
transformation we align the shapes. Then we calculate the 
rotation and translation error between the detected shapes. This 
test is very efficient, so we use it to excludes most wrong 
combinations. Still, some wrong combinations cannot be 
excluded using this test (See Figure 5). So, we must apply 
another test, which’s to align the two point-clouds and compute 
the actual total alignment error between them (by calculating the 
distance from each point on one point-cloud to the nearest point 
in the second point cloud). 

 

Figure 5: An example of a wrong random combination of basic 

shapes. After alignment the orthogonal distance between the 

basic shapes (the red, green and blue planes in this case) is 

almost zero, but the total distance (point to point) between the 

two point-clouds is large. 

 

IV. RESULTS AND DISCUSSION 

We used a low-resolution Optoma projector and a Basler 
camera to perform gray code structure light scanning using the 
method of [4]. For several CAD objects, we captured a 3D scan 
from multiple views and then we used the method described 
above to align the resulting point clouds of each view. Figure 6 
shows several alignment examples, while (table 1) summarizes 
the resulting average alignment errors of each example. 

TABLE I.  REGISTRATION RESULTS 

 Rotation 

Error 

Translation 

Error 

Total Error  

(point-to-point) 

Average 

Iterations 

1 0.0628 0.00591 1.9229 <8000 

2 0.0290 0.1660 0.8610 <1000 

3 0.0267 0.0000 0.6649 <1000 

4 0.0514 1.7911 0.8208 <1000 

5 0.0509 0.0112 0.4263 <1000 

 

The numbers in the table are calculated by running the 
detection algorithm many times on each model and then taking 
the average of each. The last column calculates the average 
number of RANSAC iterations the algorithm took to find the 
correct combination of basic shapes. 

What happens if there are not enough shapes detected? For 
example, sometimes only two detected planes are shared among 
the two views. Or even three planes with two of them parallel to 
each other. We noticed that ICP often works successfully even 
if the initial alignment it’s too rough. For example, it will still 
succeed if we run it on the result of Figure 5. 

Another option for future research is to formulate the 
problem as a restricted ICP algorithm. Such that we restrict the 



possible transformations returned from ICP to keep the detected 
basic shapes aligned with each other. 

At last, we noticed that the method works well even if the 
object has been physically changed between the two point-
clouds as in example 4 in Figure 6. 

V. CONCLUSION 

In this paper, we presented a method to align CAD point 
clouds by detecting basic shapes (planes, cylinders, cones, etc) 
in them and matching the shapes to find the best possible 
alignment. We noticed that the algorithm works well when there 
are enough overlapping basic shapes between the two views. If 
there are no enough shapes detected, in many cases the algorithm 
provides a good rough alignment to start the ICP algorithm. 
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Figure 6: Five examples of aligning CAD point-clouds. 
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